[ Features Index | Silicon Valley | Metroactive Home | Archives ]
Nuclear Trip
By Annalee Newitz
IT'S ALWAYS FUN to visit a nuclear reactor. They're so mysterious, full of invisible, bouncy particles that could zoom painlessly through your body, boring nano-scale holes in your DNA and mutating you to death. Even though nuclear reactors can't turn into bombs, all this talk of weapons of mass destruction in the media had me kind of hankering for anything vaguely related to nukes. Luckily, the Massachusetts Institute of Technology runs a nuclear reactor that's open for tours.
I picked my way along a sunny street full of melting snow crusts, trying to figure out how to reach a large, barrel-shaped building the color of pistachio ice cream. I'd been given an address, but the numbers didn't appear on any of the doors I passed. And the reactor itself, set back from the street behind yards of chain-link fence, didn't exactly sport any welcome mats. Finally, I decided to ring the bell on an unmarked, locked metal door whose window was protected by steel wire. It had that groovy nuclear "high-security" look.
A breezy woman in uniform let me in before I could ask if I was in the right place, but it became obvious immediately that I was. My colleagues had already arrived, and everybody was signing in at the front desk. I immediately felt like I was on a high school field trip, which wasn't completely off the mark: dozens of high schools send curious students to MIT's reactor every year to do experiments and learn about physics.
After an introductory lecture on how chain reactions work, we were ready to head down a long corridor, past two Geiger counters and into the incongruently seafoam-colored interior of the reactor itself. We entered a tube--also seafoam--which turned out to be an airlock. As the outer door shut with a hissing sound, I was reminded of the submarine ride at Disneyland--the one where you climbed down into a fairly realistic-looking sub and rode around this shallow lake on a track, looking at "undersea life." Maybe I thought of it because that ride had been designed with roughly the same late-'50s, early'60s aesthetic as this nuclear reactor.
The second door on the airlock opened, and we were inside. The reactor room was dominated by a giant concrete structure at its center, whose 5-foot-thick walls were wrapped around neutron-absorbing heavy water, which circulated around the core, protecting us from stray radiation. I tried to imagine what the uranium rods looked like inside, and suddenly my ears popped. "We keep air pressure lower inside the reactor area," our guide explained. "That way, if there's a breach in the walls, air will flow back inside rather than out." Next to me, an unidentifiable object that looked something like a door wrapped in metal had a "radioactive" sign on it. "Do Not Loiter," the sign advised.
"Why do you think they painted the place this color?" Lauren asked me, looking vaguely alarmed. Although the reactor had been designed in the mid-1970s, all those thickly painted shades of blue and green everywhere gave the place a swinging, Kennedy-era feel. I almost expected to see sparkly foam on the ceiling. Maybe nuclear power, no matter how far we come, will always bring a retro sensibility with it.
Despite all the "Warning! Radioactive!" signs everywhere, I felt totally secure inside the reactor. The place was a monument to safety measures: in the event of an emergency, the reactor could be shut down in a half-second. I discovered that borax, a common household cleaner containing boron, can be used on a nuclear reactor the way sugar is in a gas tank. Boron absorbs neutrons; if you poured a bunch of borax on the core, you'd shut the whole thing down instantly. Comforted by that thought, we looked at a long metal chute sunk deep into the concrete around the reactor core. Students used it to do quantum particle experiments by siphoning off neutrons one at a time from the core and watching their behavior.
As we walked slowly around the concrete-swaddled core, I felt a kind of giddy recklessness. Of course reactors cannot turn into nuclear bombs: the geometry for a bomb is totally different than for a reactor core. All the same, when I looked at the metal-and-treated-glass containers where researchers used robotic arms to play with radioactive stuff, I felt like I knew what had happened to all the smart kids who blew their fingers off building rockets in their backyards.
MIT's nuclear reactor is no more dangerous than many labs. You can be exposed to radiation or worse in an undergraduate biology lab, and the possibility of explosions in a chem lab are nothing to sneeze at. But nuclear power has a mystique. As we left, exposing our bodies to Geiger counters en route, I thought about how generations had been raised to believe nukes were the scariest things in the world. But they aren't. We can weaponize nature in all kinds of massively destructive ways. Nukes, I'm afraid, are just the beginning.
[ Silicon Valley | Metroactive Home | Archives ]
Copyright © Metro Publishing Inc. Metroactive is affiliated with the Boulevards Network.
For more information about the San Jose/Silicon Valley area, visit sanjose.com.
|
|